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We present a straightforward, quasi-algebraic treatment of simple one-particle 
quantum-mechanical systems. The method consists primarily of a canonical transformation 
that changes the Schr6dinger equation into a first-order differential equation, thus allowing 
an easier derivation of the eigenvalues and eigenfunctions. We express the latter in a 
way which is not commonly encountered in the standard literature on quantum mechanics 
and quantum chemistry. The derivation of generating functions for the eigenfunctions 
offers no difficulty because the method is formulated in the coordinate representation. 
As illustrative examples, we consider the harmonic oscillator and a particle in a Kratzer 
potential. 

1. Introduction 

Lie algebraic methods prove to be useful in treating a wide variety of  physical 
problems. Typically, reviews, textbooks and monographs about such methods assume 
that the reader is familiar with the main features of  Lie algebras and groups. Creek and 
Paldus [ 1 ] pointed out that such preliminary knowledge is not necessary and proposed 
a motivating construction of  the generators of  the so(2, 1) algebra. They exploited 
a resemblance between this algebra and the well-known angular momentum algebra 
described in most standard textbooks on quantum chemistry [2,3]. 

The purpose of  the present communication is an alternative approach to the 
motivating treatment of  the so(2, 1) Lie algebra given in ref. [1]. We work in the 
coordinate representation and construct generating functions for the eigenfunctions 
of  simple one-electron systems. The key of  our method is a canonical transformation 
of  the SchrOdinger equation into a more easily solvable first-order differential 
equation. The general method is outlined in section 2. In section 3, we apply it to 
the harmonic oscillator and in section 4, we treat a particle moving in Kratzer 
potential. In section 5, we discuss the main results and mention additional applications 
of  the present procedure. 
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2. The method 

In what follows, x represents an arbitrary coordinate and D stands for d/dx. 
We use the standard notation [,4, B] to represent the commutator between the operators 
A and B. An important commutator in our approach is [xD, xiD i] = (i - j ) x i D  j, which 
follows from straightforward application of [x, D] = 1. We say that an operator O 
is of degree n if [xD, O] = nO. If O'  is of  degree - n ,  we have that [xD, [O, O']] = 0. 
In particular, the quite general operator 

minim,n} 
Xmn = ~ ckxm-kD n-k (1) 

k=0 

is of  degree m -  n. This simple criterion enables one to construct the algebra for 
one-electron systems very easily. Since we are interested in the treatment of  second- 
order differential equations, it is sufficient for our purposes to consider the operators 
X 1 = - X  2 - nD2/2 + M(2x") and X 2 = - x" /2 .  Because they are, respectively, of degree 
- n  and n, their commutator has to be a function of xD. A straightforward calculation 
leads to X3 = [X2, X1] = nxD/2 + n(n - 1)/4. Furthermore, since [X3, X2] = n2X2/2 
and [X3, X1] = - n 2 X l / 2 ,  we find it convenient to define the new set of operators 

K 0 = 2X3/n  2 = xD/n + (n - 1)/(2n), 

K+ = 2X 2/(cn 2) = x n/(cn 2), 

K_ = cX 1 = c( -x2-nD 2 + 2t,/x")/2, 

(2a) 

(2b) 

(2c) 

where c is a real number to be determined according to the form of the SchrOdinger 
equation. These operators satisfy the commutation relations 

[Ko, K+] = +K±, [K+,K_] = K o. (3) 

Upon using the well-known expression 

eABe -A = B + [A, B] + ½ [A, [A, B]] + . . . .  

which holds for any pair of linear operators A and B, we find that 

(4) 

exp(OK+ )K o exp(-0K±) = K o -Y-OK+, (5a) 

exp(aK+)K_ exp(-aK+) = K_ + otK o - a Z K + / 2 ,  (Sb) 

exp(flK_)K+ exp(-flK_) = If+ + flK o - f12K_/2, (5c) 

exp(0K o)K+ exp(-0K o) = e+°K+, (Sd) 

where 0, a, and fl are arbitrary constants. 
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Many quantum-mechanical problems can be reduced to an eigenvalue equation 
of  the form 

W W  = w W ,  W = aK_ + bK+, (6) 

where ab  > 0. For any operator U having an inverse U -1, we can rewrite this 
eigenvalue equation as UWU-lO = wO, in which ~ = UW. If  we choose U so that 
UWU -1 is proportional to Ko, then the eigenvalue equation (6) becomes a first-order 
differential equation. This is the main reason why we explicitly select the coordinate 
representation and choose Ko as in eq. (2a). The simplication just mentioned can 
be achieved by means of  an operator 

U = exp(flK_) exp(trK+) (7) 

if  the constants a and fl are conveniently set. Straightforward application of  the 
canonical transformations (5) shows that when 

a = ( 2 b / a )  1/2, fl = - l / a ,  (8) 

we have 

UWU -1 = (2ab)l/2Ko . (9) 

In eq. (8), we choose a to be the positive root in order to rule out the unphysical 
solution from the very beginning (cf. the examples below). The problem reduces 
to the solution of  the first-order differential equation 

K o O  = x ~ ' / n  + (n  - 1)O/(2n) = kO, (10) 

in which k = w ( 2 a b )  -1/2 and the prime stands for differentiation with respect to x. 
The result up to a constant factor is 

O = x s, s = kn + ( 1 -  n) /2 ,  

so that any eigenfunction W of  W reads 

(11) 

= exp(-aK+)  exp(-flK_)x s. 

Successive application of  the operator K_ to x ~, 

KJ_x s = (c  / 2) j [)1, - s(s  - 1)] [~, - (s - n) (s - n - 1)] 

• . . [,~, - (s - j n  + n ) ( s  - j n  + n - 1)]x s-in,  

(12) 

j = 1, 2 . . . . .  (13) 

reveals that W is not regular at the origin unless KJ_x s vanishes for a certain j value 
such that g = s - j n  + n > 0. These two conditions determine the eigenvalues 
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k = kj_ I = j - 1 ] 2 + n - 1 ( $ + 1 / 4 )  112, j = 1, 2 . . . . .  (14a) 

T = I/2 _+ ($ + 1/4) 1/2 > 0. (14b) 

Clearly, if ~ > 0, only the plus sign in eq. (14b) is admissible. 
In order to construct a generating function for the solutions of  the general 

problem (6), we define 

0 v = K~x  r ,  u v = exp(-/3K_)~ v, v = 0 . . . . .  (15) 

so that 

K_O o = 0. (16) 

Therefore, 

G(t, x)  = 2 uv tv/v!  = exp(-flK_)lV,, ~ = exp(tK+)~ o. (17) 
V=0 

It follows from 

K v/t = exp(tK+) e x p ( - t K + ) K  exp(tK+)O o 

= exp(tK+) (K_ - tK o - tZK+/2)O o 

= - [kot + ( tz /2)K+ ]~t (18) 

that 

K ~ t  = - k o t ~ t ,  K = K_ + t2K+]2. (19) 

Therefore, i f  we find numbers cl, c2, and c3 that satisfy 

exp(-13K_) = exp(-ClK +) exp(¢zK o) exp(c3K), (20) 

and take into account that 

exp(czK o)lg t = exp(c 2K o) exp(tK+) exp(-czK o) exp(c 2K o)~o 

= exp(c 2 k o) exp(t e cz K+)O o , (21 ) 

then we conclude that the generating function is given by 

G(t, x) = exp[ko(c 2 - tc3)] exp[(t e c2 - c 1)K+ ]~o. (22) 

One can determine cl, c2, and c3 by means of  any of  the methods for disentangling 
exponential operators, some of  which have been recently reviewed [4]. However,  
as we are here interested in G and not in the particular values of  c1, c2, and c3, we 
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can use a much simpler procedure. Equation (22) shows that the generating function 
is of  the form 

exp(-flK_)lfft = A(/3) exp[B(fl)K+]O o, A(0) = 1, B(0) = t. (23) 

In order to determine the form of  the functions A and B, we simply differentiate 
both sides of  this last equation with respect to 15 and rewrite the result according 
to 

-K_ G = - A  exp(BK+) exp(-BK+)K_ exp(BK+)O o = ( ko B + B2 K+ /2 )G 

= [A-IdA~d~3 + (dB/dfl)K+lG, (24) 

thus obtaining the differential equations 

dA/dfl = koBA, dB/dfl = B2]2, (25) 

the solutions of  which are 

A = (1 - fit~2) -2k°, B = 2t/(2 - fit). (26) 

Therefore, the generating function is 

G(t, x) = (1 - fit~2) -2% x r exp{2txn/[cn2(2 - fit)]}, (27) 

from which one can obtain the polynomials uv according to eq. (17). Although one 
commonly derives such polynomials more easily from their definition [15], the 
generating functions are extremely useful to obtain normalization factors and other 
integrals involving them. 

3. The harmonic  oscillator 

The first illustrative example is the SchrOdinger equation for the simple one- 
dimensional harmonic oscillator, which we write in dimensionless form as 

HOd = EW, H = I (-D2 + x2). (28) 

We can treat this problem easily by means of  the operators in eqs. (2) with n = 2, 
)t, = 0 and c = 1, so that 

K o = l X D + ¼ ,  K + = l x  2, K _ = - ½ D  2. (29) 

It follows from 

W = H = K_ + 2K÷, (30) 
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that a = 1 and b = 2 (notice that ab > 0 as assumed in section 2). Therefore,  we have 
~ =  2 and /3= - 1 / 2 ,  so that 

U = exp(D2/4) exp(x2/2), (31) 

and the canonical  transforation is UHU -1 = 2K0. According to the general equations 
in the previous section, the eigenvalues and eigenfunctions are given, respectively, 
by 

E v = 2 k  v = { 2 j - 3 / 2 ,  2 j - 1 / 2 ,  j = l ,  2 . . . .  } = { v + l / 2 ,  v = 0 , 1  . . . .  } (32) 
and 

W v = exp ( -x2 /2 )exp ( -D2 /4 )~v ,  ¢b v = KVx r, ) , ( ~ -  1) = 0. (33) 

The two possible values of  7;, ~= 0 and ~'= 1, give rise to the even and odd states, 
respectively, The generating functions for these states are, respectively, 

and 
Ge(t, x) = 2(4 + t) -llz exp[tx2/(4 + t)] 

Go(t, x) = 8(4 + t) -31z exp[tx2](4 + t)]x. 

(34a) 

(34b) 

These two generating functions come from the two solutions of  the annihilation 
condition D2xr= 0, ?'= 0 and ~'= 1, and can be reduced to only one expression in 
terms of  ~. 

The  results just  obtained can be greatly simplified by reordering the set of  
functions {x 2v÷r, ~,=0, 1, v = 0 ,  1 . . . .  } as {x v, v = 0 ,  1 . . . .  }. Hence,  we can 
redefine ~ v  and uv as 

Uv = exp( -D2/4)~v ,  ~ v  = xV, (35) 

so that the eigenfunctions of  H become 

Wv = exp(-x2/2)  exp(-D2/4) xv. 

The polynomials  uv(x) are related to the Hermite polynomials  Hv(x) by 

(36) 

uv (x) = 2 -v H v (x). (37) 

Therefore,  the latter can be obtained from 

Hv(x) = exp(-d2/dy2)y v, y = 2x. (38) 

Furthermore,  the generating function for the new polynomials  uv is much  simpler  
than an of  those in eqs. (34): 

G(t, x) = ~ t r y ( x )  / v! = exp(-D2/4)  exp(tx) = exp(tx - t2/4). 
V=0 

(39) 
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The expression (38) for the Hermite polynomials does not commonly appear in 
special function tables. It has been derived by Wolf [5] in the realm of  canonical 
transforms. Our treatment is much simpler and more straightfoward. Here, we leave 
the discussion of the well-known solutions of  the harmonic oscillator to consider 
a slightly more complicated problem which better illustrated the capability of  the 
quasi-algebraic method developed in the previous section. 

4. The Kratzer potential 

The radial part of the Schr6dinger equation for a particle moving in a Kratzer 
potential V(r) = A/(2r 2) - B / r  can be written [6] 

[-  (1]2)d2]dr 2 + ~,/(2r 2) - B/r]F(r) = EF(r), (40) 

where ~, = A + l(l + 1), l = 0, 1 . . . .  being the angular momentum quantum number. 
The physical solution F(r) vanishes at the origin and at infinity. We have chosen 
the units so that both h and the mass of the particle are unity. By means of  the 
change of  variables x = (-2E)l/2r,  we can rewrite eq. (40) as 

WW = wW, W = -xDZ]2 + &/(2x) + x]2, w = B](-2E) I/2, (41) 

which is of  the general form (6) with 

K o = xD, K+ = x, K_ = -xDZ/2  + M(2x), (42) 

n = 1, a = 1, b = 1/2 and c = 1. Therefore, a =  1 and fl = -1  so that the transformation 
operator is 

U = exp(-K_) e x. 

According to the general equations of section 2, we have 

(43) 

wv =kv  = v + V ,  ~ ' = 1 / 2 + [ A + ( l + 1 / 2 ) 2 ]  1/2, v = 0 , 1  . . . . .  (44) 

~ ,  = xV+r, Uv = exp(K-) xv+r, ~ ,  = e -x exp(K_)x v+~'. (45) 

The energy eigenvalues are given by Ev = -B2/(2wv) 2. The dependence of  the 
eigenfunctions and eigenvalues on the angular momentum quantum number I is not 
explicitly indicated to make the notation simpler. The expression for the eigenfunctions 
Wv given in eq. (45) is not commonly found in the literature on quantum mechanics 
and quantum chemistry. 

According to eq. (27), the generating function is 

G(t, x) = 4r(2 + t)-2r x r exp[2tx/(2 + t)], (46) 

from which one can obtain the polynomials uv according to the expansion (17). 
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5. Further comments and conclusions 

Throughout this paper, we have presented a simple, straightforward, quasi- 
algebraic way of solving the Schr6dinger equation for simple one-particle systems. 
The main ingredients of the present approach that make it different from standard 
algebraic treatments are the explicit use of the coordinate representation, the particular 
selection of the operator K0, and the canonical transformation that reduces the 
eigenvalue equation to a first-order differential equation. In the standard algebraic 
approach, the annihilation condition (cf. eq. (16)) becomes a first-order differential 
equation in the coordinate representation, whereas here it is a second-order differential 
equation. Although the results obtained in this paper may not be entirely original, 
we have shown that one can exploit Lie algebraic methods without special knowledge 
of Lie algebra and Lie groups. This communication is intended to complement 
ref. [1] through the derivation of generating functions and alternative expressions 
for the eigenfunctions from a different, although closely related, approach. The 
expressions for the polynomials Uv are most interesting, since they do not commonly 
appear in the literature on quantum mechanics and quantum chemistry. 

The method can be easily applied to many other problems such as hydrogen- 
like atoms and the harmonic oscillator in an arbitrary number of dimensions, and 
to the Morse oscillator. One can also use the same strategy to solve some second- 
order differential equations that commonly appear in theoretical physics and chemistry, 
such as the one that produces the hypergeometric functions. 

Some of our equations for the harmonic oscillator are reminiscent of the 
Bargrnann representation for the creation and annihilation operators [7], thus disclosing 
a connection between this representation and the algebraic methods. Therefore, the 
results in section 2 can be thought of as a generalization of the Bargmann representation 
which may be useful, for instance, to extend the analysis of the anharmonic oscillator 
carried out by Hioe and Montroll [8] to a wider class of problems. Another example 
is the use of the canonical transformation described in this paper to facilitate the 
application of perturbation theory to nontrivial one-particle systems [9]. 
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